
iGCSE Computer Science – Unit 1 – Unit 3 English Name: ____________________

Spring Break Assignment: Password Validator ©2025 Chris Nielsen – www.nielsenedu.com

Assignment Objective
Design, plan, and implement a program that validates a user's proposed password against a set of
security rules.

Core Tasks

Part 1: Problem Analysis & Design

1. Understand the Rules: Your validator must check a candidate String password for the
following criteria:

• It must be at least 8 characters long.
• It must contain at least one uppercase letter (A-Z).
• It must contain at least one lowercase letter (a-z).
• It must contain at least one digit (0-9).
• It must contain at least one special character from this set: ! @ # $ % & * ?.

2. Decompose the Problem (and then use Abstraction):

A key validation task is counting how many characters in the password belong to a specific group
(uppercase letters, lower case letters, digits, special characters). Design a subprocess/method called
charCountInString that conforms to the design requirements:

• Parameters to this method: a String, the password, and an array of characters (char[])
to count.

• Algorithm: the method will need to loop through the password and count how many
characters in the password match any character in the provided character array parameter.

• Return: the count of matching characters (an integer, type int).

The charCountInString method is then to be called by a subprocess/method – call this method
validatePassword – that will pass the appropriate parameters to check that the password follows
each of the rules mentioned above, other than the first rule that verifies the password length, which
will not need to call method charCountInString. The validatePassword method should:

• use either a chained if statement or sequential if statements to test the different rules
• print a message to the console for either (a) the first rule that it finds has failed, or (b) all

rules that have failed.
• return true if the password is valid (all rules have been followed), otherwise return false.

4. Documentation: draw separate flowcharts for the main process, the logic inside the
charCountInString subprocess, and the logic inside the validatePassword subprocess. You
may decompose the problem into even smaller subprocesses, if that makes sense for your design.
Some details may be left out of the flowcharts (such as a print method), if the coding
implementation will be simple and obvious.

Page 1 of 4

iGCSE Computer Science – Unit 1 – Unit 3 English Name: ____________________

Spring Break Assignment: Password Validator ©2025 Chris Nielsen – www.nielsenedu.com

Part 2: Implementation and Testing

You will build the program in two phases, focusing on reusability.

Phase A: Write and Test charCountInString

Code the charCountInString method exactly as you designed and documented it with your
flowchart.

Hint: you will need to extract single characters from the password string using one of the string
methods, perhaps method charAt or method toCharArray. You can search for descriptions of
these methods online and decide which you feel will result in the easier code to understand. I
suggest the Oracle website as a reference for Java methods.

After completing the method and before you write method validatePassword, which will call
this method, test the charCountInString method in isolation in a simple way – i.e.: hardcode a
test string and character array, print the result.

Pearson Pseudocode example of testing the count of digits by method charCountInString:

SET digits TO ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

SET password TO "pa55w0rd"

SET charCount TO charCountInString(password, digits)
SEND charCount TO DISPLAY

You should test more than one password to ensure your code works as expected. Remember to test
the extreme cases: when the password contains no characters at all, when there are no digits in the
password, and when all characters in the password are digits.

Phase B: Write validatePassword

Main program logic that will provide some simple test cases for the method validatePassword
is given in Phase C. As validatePassword calls method charCountInString, that method
will be tested again, partially and indirectly. However, it will be difficult to debug the entire
program if charCountInString is not working properly prior to implementing method
validatePassword.

Study the main program. You should see that you will need to have method validatePassword in
a class named PasswordValidator. The main program will print out a message if the password is
found to be valid, for example, for the password “V@1idP@ssW0rd”, the given main program will
print:

Password "V@1idP@ssW0rd" is a valid password.

There is no output for any invalid password. The output for invalid passwords should come from
method validatePassword itself.

Code the validatePassword method. When run with the main program test code given in
PasswordValidatorTester, the output should be exactly the same as, or somehow better than,
the example output shown.

Page 2 of 4

iGCSE Computer Science – Unit 1 – Unit 3 English Name: ____________________

Spring Break Assignment: Password Validator ©2025 Chris Nielsen – www.nielsenedu.com

Phase C: Test and Debug the PasswordValidator Code

Run the PasswordValidatorTester and debug your code until the output is exactly as shown.

Java class with test cases for method PasswordValidator.validatePassword:

public class PasswordValidatorTester {

 private static String[] passwords = {
 "",
 "$h0rT", // fail: not eight characters in length
 "n0upperca$e", // fail: no upper case
 "N0LOWERC@SE", // fail: no lower case
 "noD!gits", // fail: no digits
 "noSpecia1", // fail: no special characters
 "V@1idP@ssW0rd", // valid password
 "1234567890aA@", // valid password
 "validpass!1L", // valid password
 };

 public static void main(String[] args) {
 PasswordValidator.printCharArrays();
 for(String password: passwords) {
 boolean valid =
 PasswordValidator.validatePassword(password);
 if(valid) {
 System.out.println("Password \"" + password +
 "\" is a valid password.");
 }
 }
 }
}

Example output of PaswordValidatorTester:

Password "" is too short.
Password "$h0rT" is too short.
Password "n0upperca$e" contains no upper case letters.
Password "N0LOWERC@SE" contains no lower case letters.
Password "noD!gits" contains no digits.
Password "noSpecia1" does not contain a special character.
 Special characters: [!, @, #, $, %, &, *, ?]
Password "V@1idP@ssW0rd" is a valid password.
Password "1234567890aA@" is a valid password.
Password "validpass!1L" is a valid password.

Page 3 of 4

iGCSE Computer Science – Unit 1 – Unit 3 English Name: ____________________

Spring Break Assignment: Password Validator ©2025 Chris Nielsen – www.nielsenedu.com

Part 4: Going Beyond

You can optionally do these additional mini-projects related to this project:

• update the code such that you declare a number of constants at the top of the class, each
constant with the minimum number of characters of the specified type. For example, if we
wished the code to enforce a minimum of 3 special characters, we would define a constant at
the top of the class with code such as:

public static final int MINIMUM_SPECIALCHARS = 3;
For this, you should probably also modify the error messages to inform the user how many
characters of that type the password should have.

• Write an additional method passwordStrength that returns an integer value that
represents how strong the password is. The integer value is to represent the number of tests
that are passed. Failing all tests will return zero (0), and for each test passed, an additional
point will be added. Write test code that will test the method thoroughly.

• Write and test a methods countVowels and countConsonants, each of which call the
charCountInString method and return the number of vowels or consonants,
respectively, in a String.

Minimum Completion Checklist

 Complete flowcharts for the algorithms in ✅ charCountInString and validatePassword.

 ✅ charCountInString method is implemented, tested, and works correctly.

 ✅ validatePassword method is implemented, tested using the given
PasswordValidatorTester class, and works correctly.

 Code is neatly formatted and uses meaningful variable names.✅

If you attempt any of the Going Beyond code challenges, be sure to save and be able to show the
results given in the Minimum Requirements Checklist.

Page 4 of 4

